
The Australian National University
Second Semester Midterm Examination – September 2006

COMP2310
Concurrent and Distributed Systems

Study period: 15 minutes
Time allowed: 1.5 hours

Total marks: 50
Permitted materials: None

Questions are

not

 equally weighted – sizes of answer boxes do

not

necessarily relate to the number of marks given for this question.

All your answers must be written in the boxes provided in this booklet. You will be provided with scrap paper
for working, but only those answers written in this booklet will be marked. Do not remove this booklet from
the examination room. There is additional space at the end of the booklet in case the boxes provided are insuf-
ficient. Label any answer you write at the end of the booklet with the number of the question it refers to.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy
and rambling nature. Marks will be lost for giving information that is irrelevant to a question.

The following are for use by the examiners

Name (family name first):

Student number:

Q1 mark Q2 mark Q3 mark Total mark

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 2 of 15

1. [10 marks] General Concurrency

(a) [2 marks] What can you conclude from the fact that different parts of a system are exe-
cuted

concurrently

? Give a precise answer.

(b) [4 marks] Give one example for a system for which you would employ concurrent pro-
gramming and an example of a system for which you would employ sequential program-
ming. Give good reasons for your decisions.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 3 of 15

(c) [4 marks] Sketch all possible process states (as seen by the scheduler/dispatcher) and their
transitions (including secondary memory states). Why is the state ‘created’ different from
the state ‘ready’?

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 4 of 15

2. [20 marks] Synchronization

(a) [8 marks] You saw simple forms of two-process deadlocks in multiple places in the lecture.
The exclusive usage of which of the following primitives can possibly create such a simple
deadlock situation: semaphores, monitors, synchronous message passing, asynchronous
message passing? For each of the four primitives give either an example for a deadlock sit-
uation or a reason why deadlocks cannot occur.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 5 of 15

(b) [4 marks] Name and describe an example for a synchronization hardware primitive which
enables you to construct mutually exclusive access to critical sections. Give code which
you would insert before and after every critical section based on your chosen hardware
support primitive (not considering fairness or starvation conditions).

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 6 of 15

(c) [8 marks] Consider the following Ada95 program which compiles without warning (and
find the questions on the next page).

with Ada.Text_IO ; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;

procedure Global is

 protected type Harmonizer (Group_Size : Positive) is

 entry Group_Add (Value : in Natural);
 procedure Add (Value : in Natural);
 function Sum return Natural;
 private
 Let_Them_Add : Boolean := False;
 Protected_Value : Natural := 0;
 end Harmonizer;

 protected body Harmonizer is

 entry Group_Add (Value : in Natural)
 when Group_Add'Count = Group_Size or Let_Them_Add is
 begin
 Protected_Value := Protected_Value + Value;
 Let_Them_Add := Group_Add'Count > 0;
 end Group_Add;

 procedure Add (Value : in Natural) is
 begin
 Protected_Value := Protected_Value + Value;
 end Add;

 function Sum return Natural is
 begin
 return Protected_Value;
 end Sum;
 end Harmonizer;

 Harmonizer_Instance : Harmonizer (4);

 task type Child_Task (Increment : Natural);
 task body Child_Task is
 Observed_Sum : Natural;
 begin
 Harmonizer_Instance.Group_Add (Increment);
 Observed_Sum := Harmonizer_Instance.Sum;
 Harmonizer_Instance.Add (Increment);
 end Child_Task;

 Child_1 : Child_Task (10);
 Child_2 : Child_Task (20);
 Child_3 : Child_Task (30);

begin
 Harmonizer_Instance.Group_Add (100);
 Put("Sum after the first add : "); Put (Harmonizer_Instance.Sum); New_Line;
 Harmonizer_Instance.Add (100);
 Put("Sum after the second add: "); Put (Harmonizer_Instance.Sum); New_Line;
end Global;

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 7 of 15

(i) [4 marks] Is this a deterministic program? (i.e. will it terminate and always provide the
same output?) What is the sequence of calls as they are accepted and processed by the pro-
tected object? If you find the program non-deterministic then give multiple possible
sequences.

(ii) [2 marks] Which output do you expect to find on the terminal?

(iii) [2 marks] The function

Sum

 can potentially be called and executed by multiple tasks
simultaneously. Why does this not pose a problem and is even explicitly supported by
Ada95? Give a precise, technical answer.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 8 of 15

3. [20 marks] Message Passing

(a) [4 marks] While setting up a message passing system between two networked computers,
you experience that the message received is different from the message sent - even though
you used the same programming language on both sides. Which are the possible problems
here? Distinguish between a reproducible and a stochastic difference between the mes-
sages. Also distinguish between receipt of a complete (same length) and an incomplete
(different length) message.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 9 of 15

(b) [8 marks] Consider three processes

p1

,

p2

,

p3

, that will communicate with each other
using send and receive message passing calls. The following series of events are supposed
to take place concurrently:

 Process p1 | Process p2 | Process p3
 --
 A | D | G
 sendto (p2) | sendto (p3) | receivefrom (p1)
 B | E | H
 sendto (p3) | receivefrom (p1) | receivefrom (p2)
 C | F | I

(i) [2 marks] Detail a possible time-line of events assuming that the message passing facil-
ity is

asynchronous

(indicate the events

A

-

I

, and the messages by send-events, receive-
events, and connecting arrows).

(ii) [2 marks] Detail a possible time-line of events assuming that the message passing facil-
ity is

synchronous

 (indicate the events

A

-

I

, and the messages by send-events, receive-
events, and connecting arrows).

t

p3

p1

p2

t

p3

p1

p2

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 10 of 15

(iii) [4 marks] Now consider that all three processes repeat the events given above in infi-
nite loops utilizing synchronous and asynchronous communication as indicated:

 Process p1 | Process p2 | Process p3
 --
 loop | loop | loop
 A | D | G
 SendSync (p2) | SendAsync (p3) | ReceiveSync (p1)
 B | E | H
 SendSync (p3) | ReceiveSync (p1) | ReceiveAsync (p2)
 C | F | I
 end loop | end loop | end loop

Detail what will happen to the progress of the two remaining processes if one of the pro-
cesses dies unexpectedly (or is explicitly terminated). Differentiate the cases involving ter-
mination of processes

p1

,

p2

, or

p3

 (i.e. only one process will terminate in every test-run).
Explain what assumptions about the communication systems you made in your answer.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 11 of 15

(c) [8 marks] Consider the following Ada95 program. The program is syntactically correct
and compiles without warning. (see question on the next page.)

procedure Ring is

 Rounds : constant Positive := 10;
 type Ring_Range is mod 5;

 task type Task_Type is
 entry Receive_Task_Id (Task_Id : in Ring_Range);
 entry Ring (Count_In : in Natural);
 end Task_Type;

 Task_Array : array (Ring_Range) of Task_Type;

 task body Task_Type is
 Counter : Natural := 0;
 Towhom : Ring_Range;
 Id : Ring_Range;
 begin
 accept Receive_Task_Id (Task_Id : in Ring_Range) do
 Id := Task_Id;
 end Receive_Task_Id;
 Towhom := Id + 1;

 While Counter < Rounds * Task_Array'Length loop
 if Id = Task_Array'First then
 Task_Array (Towhom).Ring (Counter);
 accept Ring (Count_In : Natural) do
 Counter := Count_In + 1;
 end Ring;
 else
 accept Ring (Count_In : Natural) do
 Counter := Count_In + 1;
 end Ring;
 Task_Array (Towhom).Ring (Counter);
 end if;
 Put ("Task "); Put (Integer (Id), 2);
 Put (" counts "); Put (Counter, 2); New_Line;
 end loop;
 end Task_Type;

begin
 for i in Task_Array'Range loop
 Task_Array (i).Receive_Task_Id (i);
 end loop;
end Ring;

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 12 of 15

(i) [4 marks] Does this program always terminate? If so, does it terminate normally, or by a
raised exception/run-time error? If not the all parts of the program terminate, enumerate
which parts are not terminating. If the program does only terminate sometimes explain a
constellation in which is does not terminate. If the program does not always or never ter-
minate then make a suggestion for a smallest possible change to make it terminate (nor-
mally).

(ii) [2 marks] What is the smallest and the largest

Counter

 number which appears on the
terminal (without your potential code change)?

(iii) [2 marks] Why does the first task in the task array need to behave differently from all
other tasks? Explain what would happen if the first task would behave like all other tasks.

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 13 of 15

continuation of answer to question part

continuation of answer to question part

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 14 of 15

continuation of answer to question part

continuation of answer to question part

Student number:..

COMP2310 Second Semester Midterm Exam 2006 Page 15 of 15

continuation of answer to question part

continuation of answer to question part

